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SUMMARY

Projection methods are among the most adopted procedures for solving the Navier–Stokes equations
system for incompressible �ows. In order to simplify the numerical procedures, the pressure–velocity de-
coupling is often obtained by adopting a fractional time-step method. In a speci�c formulation, suitable
for the incompressible �ows equations, it is based on a formal decomposition of the momentum equation,
which is related to the Helmholtz–Hodge Decomposition theorem of a vector �eld in a �nite domain.
Owing to the continuity constraint also in large eddy simulation of turbulence, as happens for laminar
solutions, the �ltered pressure characterizes itself only as a Lagrange multiplier, not a thermodynamic
state variable. The paper illustrates the implications of adopting such procedures when the decoupling is
performed onto the �ltered equations system. This task is particularly complicated by the discretization
of the time integral of the sub-grid scale tensor. A new proposal for developing time-accurate and
congruent intermediate boundary conditions is addressed. Several tests for periodic and non-periodic
channel �ows are presented. This study follows and completes the previous ones reported in (Int. J.
Numer. Methods Fluids 2003; 42, 43). Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The extension of numerical methods that are commonly used for solving the Navier–Stokes
(NS) equations for laminar, isothermal, incompressible �ows, to a form that is also suitable
for the large eddy simulation (LES) of turbulent �ows is only apparently a straightforward
task.
As it is known, di�erently from direct numerical simulation (DNS), LES is based on a

formal separation between large (resolved) and small (unresolved) �ow scale contributions,
obtained from the application of a �ltering procedure on both continuity and momentum
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equations (e.g. see Reference [1]). Thus, the unresolved sub-grid scale (SGS) tensor must be
modelled in terms of the resolved �eld by means of some suitable functional relation. Such
additional SGS tensor is a function of space and time and has to be properly discretized,
congruently with the other terms in the momentum equation.
An important concept is that the �ltered pressure characterizes itself only as a Lagrange mul-

tiplier used to satisfy the continuity constraint, not a thermodynamic state variable, exactly
as it happens for the DNS. Therefore, heavy computational procedures would be needed
also in LES for solving the resultant Stokes-like system. In order to simplify such proce-
dures, a velocity–pressure de-coupling is often introduced, allowing us to solve separately
the parabolic–elliptic equations. A fractional time-step (FTS) method, expressed in a speci�c
formulation suitable for incompressible �ows, is based on a formal decomposition of the
momentum equation. This idea is strictly related to the Helmholtz–Hodge Decomposition
(HHD) theorem of a vector �eld in a �nite domain (e.g. see References [2–6]) from which
the name projection methods comes too.
The FTS method provides the solution of the NS equations in certain separated steps.

The �rst one is simply based on the solution of the time-discretized momentum equation.
One speaks of incremental-pressure projection methods if a provisional pressure gradient is
used, otherwise of pressure-free projection (PFP) methods. This prediction equation must be
associated to a suitable set of intermediate boundary conditions for parabolic-type equations.
Its solution provides a non-solenoidal velocity vector �eld, say v∗, which must be afterwards
projected onto the space of divergence-free vector functions. Hence, the second step consists
in solving the elliptic Poisson equation for an auxiliary gradient �eld, say ∇�, associated to
proper closure conditions, and is needed to enforce continuity. According to the HHD, the last
step is the correction of v∗ by means of the computed gradient �eld ensuring a �nal velocity
which satis�es the continuity constraint.
In the �rst step of the FTS methodology, a semi-implicit, multi-step, second-order time-

accurate discretization, as the Adams–Bashforth=Crank–Nicolson (in the following simply in-
dicated as AB=CN) scheme, is often adopted, e.g. see References [7, 8]. In this method the
equation for v∗ is obtained by performing �rst the AB=CN integration of the momentum
equation and, thereafter, by disregarding the time integral of the pressure term. For DNS
it is usual to cast the non-linear convective terms within the AB integration and the linear
molecular di�usive ones within the CN. When approaching the LES equations, one has also
to discretize the time integral of the SGS tensor, by choosing if including it into either the
AB or the CN discretization. Depending on such choice, the nature of the resulting system
is either linear or non-linear, and the resulting provisional �elds v∗ gets di�erent meanings.
Therefore, intermediate boundary conditions assigned during the �rst step must account for
the real meaning of the provisional vector �eld that depends on both �ltering and turbulence
modelling.
Following the HHD theorem, the boundary conditions for the second step (i.e. the Poisson

equation) prescribe that the normal component of the boundary value for v∗ is equal to
the normal component of ∇� plus that one of the exact velocity. Therefore, the Neumann
boundary conditions for the auxiliary gradient �eld set the solution to satisfy exactly the
mass-�ow boundary condition, while ensuring continuity. The solution of the Poisson problem
cannot ensure that also the tangential component turns to be satis�ed, at least at the same
second-order accuracy resulting in the interior. This is due to the potential character of the
auxiliary variable �. As a consequence of the HHD theorem, the mathematical problem is
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well posed by specifying only one boundary condition,‡ the others remaining a�ected by the
approximate values of v∗ already prescribed in the �rst step. Therefore, the FTS method never
allows us to exactly satisfy both the normal and the tangential velocity assignments on the
boundaries. A simple and generally used remedy is to disregard the tangential components that
are obtained in the third step and reset them to their known values on the boundary, at the end
of each time-step. Nevertheless, it was clearly shown that such strategy is poorly accurate and
can reduce the smoothness of the velocity �eld [8, 9]. Hence, accurate intermediate boundary
conditions can be deduced provided that the correct relations between the real �ltered velocity,
pressure gradient and the auxiliary �elds are adopted. Several proposals for prescribing higher
order intermediate boundary conditions can be found in literature, e.g. see References [7–11].
Projection methods are now massively used in LES and the PFP method is routinely imple-

mented in several LES codes but, to date, no complete study has been published to determine
what time scales are well resolved and how they in�uence the solution. To the best of the
authors’ knowledge, this issue has not been deeply analysed in the literature. However, some
results (e.g. References [12, 13]) seem to indicate that time �ltering e�ects can become large
even for moderate time-steps.
In the present paper, the intermediate boundary conditions necessary only for the PFP

method are considered, incremental projection methods being not examined. It is worthwhile
addressing several well assessed results concerning the accuracy analysis of the PFP methods
for laminar �ows in References [8, 9, 14–19] while the well known Van Kan second-order
method [20] belongs to the class of the pressure correction ones.
The main goal of the present paper consists in providing an insight into the theoretical

analysis of the PFP method used for the LES while proposing a new procedure for improving
the accuracy of the intermediate boundary conditions. For reaching this goal and continuing in
the spirit of the continuous formulation proposed in papers [10, 11], the �eld v∗ is supposed to
be a regular solution of a suitable partial di�erential equation. Thus, it is highlighted why it is
not recommended to adopt the CN integration of the SGS model while a boundary condition
expression, ful�lling the goal of congruence and accomplishing the closure of the problem
with fully accuracy, will be proposed for the AB integration.
Some theoretical conclusions, derived for the un�ltered NS equations, can be found in

References [10, 11]. Here, after the analysis for the LES equations, a section illustrates the
numerical solutions obtained for the classical test-case of the turbulent periodic channel �ow
with steady and unsteady forcing pressure. The results are obtained in both DNS and LES
formulations and show some statistical quantities, like the spectra of the stresses on the walls
and the root mean square (rms) quantities of the velocity �uctuations, compared for both the
classical intermediate boundary condition and the present new proposal. However, for con�ned
�ows, a numerical boundary layer can appear and a�ect the velocity, depending on the lack
of the orthogonality of the HHD. In fact, the projected velocity �eld does not contain such
errors only if the boundary layer mode is orthogonal to the space of divergence-free vector
�elds. Orthogonality property is satis�ed a priori for periodic channel �ows therefore, the LES
results concerning the spatially evolving boundary layer, i.e. a non-periodic channel �ow, are
illustrated. In this way, the e�ects of the lack of orthogonality and the bene�ts of the new

‡It can be shown that the orthogonal decomposition admits a unique solution in case of either tangential condition
or normal condition assignments.
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proposal can be clearly highlighted. The main conclusion of this study is that the higher order
of accuracy in the intermediate boundary conditions is required since they allows us to get a
more rapidly convergent solutions as well as less dissipation in the walls stresses.

2. THE PRESSURE-FREE PROJECTION METHODOLOGY FOR LES

The present paper focuses only on the so-called PFP method [7, 8, 10, 11], which is adopted
for solving the LES equations for incompressible �ows. For uncon�ned �ows, this method is
a second-order time-accurate version of the original Chorin’s method [4, 14]. The guidelines
of PFP method will be now generally addressed.
Consider the point-wise NS equations for isothermal, incompressible, Newtonian, viscous

�uids, in a �nite domain �, with smooth boundary @�, written in dimensional form:

∇ · v=0 (1)

@v
@t
+∇ · (vv) +∇p′ =∇ · (2�D) (2)

D,∇sv being the symmetric velocity gradient having zero trace (constraint (1) allows to
get ∇ · (2�D)= �∇2v), � is the kinematics viscosity and p′=p=�0 with p the static pressure.
The mathematical problem consists in �nding the vector �elds v(x; t) and ∇p′(x; t)

satisfying (1), (2) in �′=�× (t0; t) for given initial v(x; t0) and assigned boundary conditions
v@(t), while satisfying compatible conditions e.g. see Reference [21].
As well known, the LES approach is based on a formal separation between large- and small-

scale �ow components. If one considers only spatial scales separation then the application of
a �ltering procedure is represented, in physical space, as a convolution product of the velocity
�eld with some suitable function G

�v(x; t)=
∫

R

G(x − x′;�) v(x′; t) dx′ (3)

being � a characteristic �lter width.
For the sake of simplicity, only uniform �lters are considered, thus �ltering operation

and spatial derivatives will commute. Otherwise, special �ltering must be adopted [1].
Equations (1), (2) can be rewritten according to a well-known decomposition of the non-
linear term (e.g. see Reference [1]) as

∇ · �v=0 (4)

@�v
@t
+∇ · (�v�v) +∇p′ =∇ · (2� �D)− ∇ · �T (5)

T= vv − �v�v being the exact SGS tensor term to be modelled for closing system (4), (5) and
�D,∇s �v is the �ltered symmetric tensor.
According to the Bousinnesq sub-grid viscosity concept, the tensor T is modelled similarly

to that of the molecular di�usion, that is like a stress term wherein the molecular viscosity � is
replaced by a point-wise time-dependent viscosity. This time-dependent viscosity is hereafter
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denoted by �LES and will be expressed in terms of the resolved velocity �v. Thus, the modelled
SGS tensor �Td is de�ned by the approximation

�T− ITr(
�T)
3

∼= �Td ≡ −2�LES �D (6)

where Tr( �T) stands for the trace of the tensor, �Td for the modelled deviatoric part and I is
the identity operator.
Expression (6) is justi�ed since, having the tensor �D zero trace, the same must happen to

the modelled tensor �Td. Therefore, the complementary spherical tensor is added to the �ltered
static pressure p′ de�ning the new pressure variable ��≡p′ + Tr( �T)=3. Let us remark that
other SGS models are commonly used along with the eddy viscosity models, for example
the scale similarity one but, for the speci�c aim of this paper, they are not pursued. The
closure of the problem is obtained when a relation �LES = �LES(�v) is speci�ed, that is when
a particular turbulence model is adopted. In this paper only the Smagorinsky model will
be adopted. Such model is based on the energy equilibrium hypothesis and prescribes the
viscosity as �LES = (C�)2| �D|, where | �D|=(2 �Dij �Dij)1=2, C the Smagorinsky constant§ and �
a suitable length related to the �lter width.
Finally, the system to be solved is constituted by the �ltered momentum equation:

@�v
@t
+∇ · (�v�v) +∇ ��=∇ · (2� �D− �Td) (7)

along with the continuity constraint (4).
For LES equations the mathematical problem consists in �nding the vector �elds �v(x; t)

and ∇ ��(x; t) satisfying Equations (4) and (7) in �′=�× (t0; t) for given initial �v(x; t0) and
boundary conditions �v@(t) assigned along the whole frontier @�. It is assumed that is possible
to deduce the boundary conditions �v@(t) by �ltering the velocity v along the frontier, although
this topic is not trivial, e.g. see Reference [22]. As happens for the un�ltered NS equa-
tions, there is no thermodynamic pressure law, the scalar �eld �� acting only as a Lagrangian
multiplier.
A velocity–pressure decoupling is performed to avoid heavy computational e�orts. One of

the possible splitting methodologies is based on the HHD theorem of a vector �eld in a
�nite domain [2–6]. First, the AB=CN scheme is applied to Equation (7) in the time interval
(tn; tn+1), leading to:[

I − �t
2

∇ · (2�∇s)
]
�vn+1 =

[
I +

�t
2

∇ · (2�∇s)
]
�vn

−�t
2

∇ · (3 �Hn − �H
n−1
)−�t [〈∇ · �Td〉

n+1

n −
∫ tn+1

tn
∇ �� dt +O(�t3); x∈�

�vn+1@ = g(�v); x∈ @�

(8)

§At present, most of LES computations are performed by means of the dynamic model, which permits to compute
this viscosity as a function of space and time by means of a procedure [1] involving a test �lter having a charac-
teristic width �′¿�.
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having posed H= �v�v while �t [〈∇ · �Td〉
n+1

n ≡ ∫ tn+1
tn ∇ · �Td dt + O(�t3) indicates a second-order

discretization of the SGS time integral to be chosen between the CN or the AB scheme. It is
assumed that the �eld �vn−1 is known and satis�es the continuity constraint ∇ · �vn−1 = 0.
Starting from Equation (8), the PFP method proceeds by disregarding the time integral of

∇ ��, then solving the corresponding truncated prediction equation for an intermediate non-
solenoidal velocity v∗:[

I − �t
2

∇ · (2�∇s)
]
v∗=

[
I +

�t
2

∇ · (2�∇s)
]
�vn

−�t
2

∇ · (3 �Hn − �H
n−1
)−�t [〈∇ · �Td〉

∗
n; x∈�

v∗@ =f(�v); x∈ @�

(9)

At this stage, the intermediate velocity �eld v∗ has no other meaning than that of an auxil-
iary variable at a �xed time, not corresponding to the velocity �eld �v at any time. Therefore,
the NS system cannot tell us how to prescribe the intermediate boundary condition v∗@ .
After having solved (9), the second step consists in determining an auxiliary gradient

�eld such that v∗= �vn+1 + �t∇�n+1 is the decomposition prescribed by the HHD theorem.
However, as addressed in References [10, 11], the orthogonality of this decomposition, that
is
∫
� �v

n+1 · ∇�n+1 dV =0, is not always guaranteed but depends on the prescribed boundary
condition n · �vn+1@ , where n is the normal to the boundary oriented in outward direction.
Thus, by solving the Poisson problem

∇2�n+1=
1
�t

∇ · v∗; x∈�

n · ∇�n+1@ =
1
�t
n · (v∗@ − �vn+1@ ); x∈ @�

(10)

the intermediate velocity is projected onto the space of divergence-free vector �elds and the
continuity constraint (4) is then enforced.
As already addressed in the Introduction, in order for problem (10) to be well posed it

is su�cient to prescribe that the normal component n · v∗@ , equals the normal component of
the gradient �eld, i.e. �t(n · ∇�n+1@ ), added with that of the exact velocity, i.e. n · �vn+1@ . In
other words, in order to ensure the continuity constraint (4), is not necessary to prescribe
n · v∗@ but is only su�cient to set in the boundary condition (10)2 the correct term n · �vn+1@ ,
whereas no one of the other two terms needs to be singularly prescribed. This feature is wholly
consistent to the fact that the HHD is well posed with only one condition and such condition
is expressed in terms of the physical value of the normal velocity component on the boundary.
In fact, problem (10) is fully equivalent to the Poisson problem ∇2�n+1 = (1=�t)∇· v̂∗;x∈�,
but having a source term modi�ed in such a way that the vector �eld v̂∗ assumes the value
n·v̂∗@ = n· �vn+1@ along the boundary, see References [10, 11], closed with homogeneous Neumann
boundary conditions n ·∇�n+1@ =0;x∈ @�. Therefore, an important conclusion is that satisfying
the continuity constraint in DNS=LES approaches, with projection methods, does not involve
the assignment of the intermediate boundary conditions. Other details of such issue can be
found in References [10, 11].
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Eventually, the solution of problem (10) (which guarantees the existence of the HHD)
allows us to perform the correction (i.e. the third step) of the intermediate velocity

�vn+1 = v∗ −�t∇�n+1; x∈� (11)

ensuring the �nal divergence-free velocity. It is immediate to see that when Equation (11) is
projected along a boundary, only the normal component is veri�ed but the tangential ones are
not. This issue will be object of speci�c analysis in the next sections.
At this point, a �rst fundamental observation (valid for both DNS=LES) to be done is that

the used notation ∇�n+1 (i.e. adopting the superscript n+1) speci�es only that the auxiliary
gradient �eld provides the correction to enforce continuity at time tn+1 but does not indicate
that there exists a time-continuous �eld �(t) of which ∇�n+1 constitutes a value at tn+1.
Actually, as it will be explained, this observation extends to the intermediate velocity �eld
v∗, too. Such a couple of issues are extensively illustrated in Section 4.2. Although other
projection methods, for example the incremental pressure one [8, 15, 19, 20], retain a previous
gradient ∇�n in the prediction equation, anyway this fact does not indicate that in such cases
the function is assumed to be continuous in time.
A second fundamental observation (valid for LES) is that the real meaning of the velocity

�eld v∗ in Equation (9) will formally depend on the type of time integration adopted for �Td.
Indeed, depending on the type of time discretization of �Td, chosen between CN or AB formu-
las, one will set either the relation �LES =f(v∗; �vn) or �LES =f(�vn; �vn−1). Thus, the statement
of the problem described in this paper is expressed as
Depending on the type of discrete time integration applied to the SGS tensor �Td, which

are the congruent second-order time-accurate intermediate boundary conditions (9)2 to be
speci�ed?
The next sections will provide some answers to these issues.

3. TIME INTEGRATION OF THE SGS TENSOR: INTERMEDIATE VELOCITY
AND AUXILIARY GRADIENT FIELD

Owing to the similarity of the eddy viscosity SGS tensor (6) with the molecular di�usive
one, it is straightforward to suppose that the CN integration can be a good choice in Equation

(8), that is assuming �t [〈∇ · �Td〉
n+1

n =(�t=2)∇ · ( �Tn+1d + �T
n
d). Thus, since in Equation (9)1

the pressure term has been disregarded, one has �t [〈∇ · �Td〉
∗
n=(�t=2)∇ · ( �T∗

d + �T
n
d) with

�T
∗
d =−2�∗LES∇sv∗. Hence, problem (9) rewrites as[

I − �t
2

∇ · (2�∗t ∇s)
]
v∗=

[
I +

�t
2

∇ · (2�nt∇s)
]
�vn+

−�t
2

∇ · (3 �Hn − �H
n−1
); x∈�

v∗@ =fCN(�v); x∈ @�

(12)

where the total viscosity �t = � + �LES, that is a function of time and space, was de�ned.
Therefore, �∗t = �+ �

∗
LES, where �

∗
LES = �

∗
LES(v

∗)= (C�)2|D∗|, and Equation (12) is a genuine
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non-linear problem. The notation fCN has been adopted to highlight the fact that the inter-
mediate boundary condition must account for the CN type of SGS integration.
Conversely it is also possible to discretize the time integral in Equation (8) by means of

the AB integration, that is �t [〈∇ · �Td〉
n+1

n =(�t=2)∇ · (3 �Tnd − �T
n−1
d ), in accordance to the type

of integration used for the advective terms. In this case one can rewrite (9) by taking into
account that now the SGS model does not longer depends on v∗:[

I − �t
2

∇ · (2�∇s)
]
v∗=

[
I +

�t
2

∇ · (2�∇s)
]
�vn+

−�t
2

∇ · [3( �Hn
+ �T

n
d)− �H

n−1 − �T
n−1
d ]; x∈�

v∗@ =fAB(�v); x∈ @�

(13)

where �T
n
d =−2�nLES �D

n
; �T

n−1
d =−2�n−1LES

�D
n−1
. The notation fAB now highlights the fact that the

intermediate boundary condition must account for the multi-step explicit SGS integration. This
time Equation (13) has the attractive feature of leading to a linear algebraic system.
Both equations show that the intermediate velocity v∗ accounts di�erently for both �ltering

and SGS modelling. In a rigorous formalism (here avoided), one should di�erentiate each time
the symbol for the velocity v∗ highlighting the discrete equation from which it comes. The
di�erences between (12) and (13) consist in both numerical and mathematical characterization.
Hence, numerical boundary conditions (12)2 or (13)2 cannot be the same but they must be
speci�ed depending on the adopted time integration.
Moreover, the gradient ∇�n+1 relates in a di�erent way to the real pressure gradient

depending on which one between Equations (12) and (13) is used. In fact, if one adopts
Equation (12), by substituting decomposition (11) and exploiting Equation (8), the functional
relation between ∇ �� and ∇�n+1 expresses as:

∇ · [(�n+1LES − �∗LES) �D
n+1
] +

[
I − �t

2
∇ · (2�∗t ∇s)

]
∇�n+1CN = 〈∇ ��〉n+1n (14)

having de�ned the exact integral 〈∇ ��〉n+1n ≡ (1=�t) ∫ tn+1tn ∇ �� dt and used the subscript notation
CN to indicate the auxiliary gradient �eld de�ned by the way of the CN scheme.
On the other hand, if one adopts Equation (13), after some manipulations, it expresses as[

I − �t
2

∇ · (2�∇s)
]

∇�n+1AB = 〈∇ ��〉n+1n (15)

having speci�ed the subscript notation AB to indicate the auxiliary gradient �eld de�ned by
the way of the AB scheme. Of course, the RHS of (14) and (15) is the same.
A key feature, highlighted by both (14) and (15), is that ∇�n+1 relates to the time integral

〈∇ ��〉n+1n by means of an O(�t) term. Thus, ∇�n+1 is an auxiliary variable representing an
integral contribution, not a time-continuous �eld. This aspect will be better addressed into the
next sections. Furthermore, observe that Equation (15) is similar to the relation derived for
the un�ltered NS equations, e.g. see References [7, 8, 10, 11], while Equation (14), involves
also the SGS modelling.
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In conclusion it will be necessary to take into account the type of SGS time integration,
i.e. (14) or (15), then consider p′= �� − Tr( �T)=3, to reconstruct the real pressure from the
�eld ∇�n+1.

4. TIME-ACCURATE INTERMEDIATE BOUNDARY CONDITIONS

According to the HHD theorem, only one condition is required therefore, nothing can be
ensured for the tangential velocity component. Of course, this is due to the potential character
of the auxiliary variable �n+1. The uncertainty arises from the rotational part of the solution,
namely directly from the intermediate velocity computed from Equation (12) or (13). In fact,
by projecting decomposition (11) along the tangential direction to the boundary, one must
ensure that t · �vn+1@ = t · (v∗@ −�t∇�|n+1@ ) where t · v∗@ is the boundary values already prescribed
in the prediction step and t · ∇�|n+1@ depends on the solution of problem (10). The di�culty
is in the fact that since t · v∗@ must be prescribed (�rst step) before that ∇�n+1 is available
(second step), an approximate expression of the type t · v∗@ = t · �vn+1@ +�tt · f(�)|@ is generally
adopted, f being only some approximation of the auxiliary �eld ∇�n+1. As a consequence, the
tangential velocity component is second-order accurate if t·(f(�)|@−∇�|n+1@ )=O(�t2) veri�es
at the end of the projection step (third step). Actually, it will be shown in the next section
that one of the most-used intermediate boundary conditions is only �rst-order time-accurate.
It is usually reputed su�cient to prescribe boundary conditions, which are one order

of accuracy lower than that into the interior. This was shown for hyperbolic equations in
Reference [23] and results from maximum principle for linear parabolic equations. On the
other hand, practical computations reveal that such lower order of accuracy can also lead to a
large increasing of the error, spreading in the interior. Regardless of the rate of convergence,
the errors on any grid points may be greater than required [24, 25]. This can become unaccept-
able for an accurate computation of relevant variables as the stresses on a wall. Furthermore,
in practical computational codes, the obtained tangential components are simply disregarded
and reset to their known values on the boundary at the end of each time-step. However, this
strategy was proved to remain still inadequate, as well as it can reduce the smoothness of the
velocity �eld [8, 9].
All these problems become much more complicated for LES, as v∗ must also account for

SGS modelling. Therefore, speci�c care must be devoted to the assignment of the tangential
velocities in (12)2 or (13)2 as the stresses on the boundaries are altered by a �rst-order
truncation error. As a �nal goal, the boundary conditions for v∗ should be consistent to the
projection step, although at the time they are applied, the function ∇�n+1 is not yet known.

4.1. Taylor series-based boundary conditions

One of the most adopted formulations for prescribing the intermediate boundary conditions is
the one proposed for the un�ltered NS equations in Reference [7]. Kim and Moin, following
a procedure of LeVeque [24], proposed to specify a non-homogeneous intermediate boundary
conditions by hypothesising that a unique time-continuous �eld v∗(t) exists. This is done
although the auxiliary �eld v∗ has been introduced only as a mathematical position into the
time-discretized prediction momentum and, as already discussed, its meaning depends on this
discretization. Such type of boundary conditions has been supposed to produce quite accurate

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:869–908



878 F. M. DENARO

results and has been largely used also for LES computations. Let us brie�y address the
procedure for the un�ltered NS equations.
The approach was based on a Taylor series expansion about tn according to v∗n+1 = v∗n +

�t(@v∗=@t)|n + O(�t2). Observe that, in doing so, it was implicitly assumed to distinguish
two time levels for the provisional �eld, i.e. v∗n+1 ≡ v∗ and v∗n, during the same time interval.
Since the intermediate �eld v∗ is supposed to be a time-continuous �eld, its time derivative is
expressed from a di�erential equation derived from Equation (2) that is @v∗=@t=∇· (−v∗v∗+
2�∇sv∗).
However, the initial condition is chosen such that v∗n= vn thus, one gets (@v∗=@t)|n=∇ ·

(−vnvn+2�∇svn)= (@v=@t)|n+∇p′n and the Taylor series rewrites as v∗= vn+�t(@v=@t)|n+
�t∇p′n + O(�t2)= vn+1 + �t∇p′n + O(�t2). Finally, the �rst-order relation ∇p′n=∇�n +
O(�t) is exploited and one has the �nal expression

v∗@ = v
n+1
@ +�t∇�|n@ +O(�t2) (16)

meaning that f(�)|@=∇�|n@ is assumed. This means that also the scalar function � must be
considered a time-continuous �eld. The gradient of the �n along the boundary is therefore
required, for this formula to be useful.
Actually, one comes into two possible kinds of errors:

(a) A numerical boundary layer. This comes because n · ∇�n+1 = n · ∇�n= · · · = n · ∇�0
on @� is implicitly prescribed.

(b) A slip condition error. Supposing for � a time-continuous function, this is because it
results t · (∇�|n@ − ∇�|n+1@ )=O(�t).

Many analyses of the original �rst-order time-accurate Chorin’s method highlighted the
appearance of the numerical boundary layer, generated by mismatch in the boundary condi-
tions for v∗ when the domain is con�ned. Modal analyses have demonstrated that a numer-
ical boundary layer is generated even when the second-order accurate AB=CN integration is
adopted [9, 14–19].
E and Liu [15, 16] stated that the e�ect of solid boundaries does not result restricted to

create numerical boundary layers. In fact these latter introduce high-frequency oscillations
reducing the order of the accuracy even in the interior of the domain. Speci�cally, Dirichlet
boundary conditions for the pressure were shown to lead to O(1) numerical boundary layers.
They performed the analysis by supposing a physical boundary layer approximation, that is
prescribing (@p=@n)|n+1@ =0 while considering n ·v∗@ =0 in the prediction step. However, in this
way, the di�erences from the real pressure gradient and the auxiliary gradient �eld de�ned
into (14), (15) are not clearly highlighted.
More recently, Strikwerda and Lee [9] stated from their modal analysis that the numer-

ical boundary layer really is in the auxiliary variable �, not in the pressure. Then, Brown
et al. [8] showed that a �rst-order convergence in the pressure is numerically obtained what-
ever is the prescribed value n · v∗@ , as long as respecting (10). This is obtained despite the
second-order convergence predicted by the normal mode analysis. They adduced this lack in
convergence rate to the non-smoothness of the �eld v∗ close to the boundary, that results in
the non-smoothness also for the variable �. As a remedy to this error they proposed to adopt
inhomogeneous Neumann boundary conditions.
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However it can be shown that, at least in case of prescribed periodical condition, in order
to retain the second-order accuracy in the velocity, the knowledge of the authentic pressure
gradient �eld is never required. It is generally accepted that, owing to the peculiar construction
of the PFP method, the limited accuracy of the gradient �eld does not limit the accuracy in the
velocity. This is because the pressure error at any time-step is disregarded [8] while prohibiting
that it could accumulate in time and contribute in the momentum equation solution.
For di�erent prescription of the boundary conditions (e.g. con�ned �ows), to retain fully

second-order accuracy all the way up to the boundary (despite the �rst-order pressure error
highlighted by (14), (15)) it is necessary to proceed in such a way that the produced numerical
boundary layer does not a�ect the velocity. Actually, the projected velocity �eld vn+1 does not
contain such errors if this boundary layer mode is orthogonal to the space of divergence-free
vector �elds. Thus, a crucial issue consists in ful�lling orthogonality of decomposition (11).
At the same time it is necessary to obtain su�ciently smooth slip conditions. Unfortunately, it
is not always possible to satisfy such a condition, which corresponds to perform an orthogonal
projection, e.g. see References [10, 11]. Hence, it is suggested that if the boundary layer mode
is an exact gradient it does not contribute in altering the divergence-free velocity �eld.

4.2. Extension of the Taylor series approach to LES equations

Thus, coming back to the present LES analysis, an important aspect to be �rst highlighted is
that the notation ∇�n used in Equation (16) is someway misleading. In fact, in the generic
time interval (tn; tn+1) wherein one wants to determine v∗ by means of Equation (12) or
(13), the intermediate velocity at tn is set to v∗n= �vn. Hence, as the functions v∗ and ∇�
are supposed continuous, decomposition (11) should apply at any time in the interval and
it would be proper to set ∇�n= 0. Let us recall that the PFP method exploits the auxiliary
�elds v∗ and ∇�n+1 only in a discrete sense as highlighted by Equations (12), (14) and (13),
(15). Therefore, one must be aware that, despite of the guesswork, ∇�n in (16) cannot stand
for the value of a continuous function at the time tn in the time interval (tn; tn+1).
Actually, Equation (16) is practically implemented in computational codes by using the

�eld ∇�n which is computed and then saved from the previous time-integration step that is
performed in the interval (tn−1; tn). Such �eld must be more properly related to the exact
integral 〈∇ ��〉nn−1. This concept is valid for any value¶ ∇�0;∇�1; : : : and it should be now
clear that the auxiliary gradient �eld could not be straightforwardly manipulated as a unique
continuous function of time. This issue must be considered when extending proposal (16)
to higher terms. To the best of the author’s knowledge, this speci�c feature of the auxiliary
variable ∇� does not seem to have been su�ciently highlighted in the literature. Only recently,
during the revision stage of this paper, it appeared in Reference [26] a continuous projection
method that accords with the continuous approach presented in Reference [10].
Moreover, some other considerations arise from expression (16):

(a) It must be rede�ned for the LES equations, not for the un�ltered NS equations.
(b) The truncation of the adopted Taylor expansion is not congruent to the local truncation

error of the AB=CN time integration, that is O(�t2) in a single time-step.

¶The initial gradient �eld is arbitrary.
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The goal is to derive the O(�t3) accurate Taylor series-based boundary conditions (i.e. fully
congruent to the second-order accuracy of the AB=CN) in the framework of LES equations.
Therefore, the approach used in References [10, 11] is now extended.
According to the Taylor expansion for v∗, this time written up to the second-order term,

one has

v∗= v∗n +�t
@v∗

@t

∣∣∣∣n +�t22 @2v∗

@t2

∣∣∣∣n +O(�t3) (17)

wherein one must substitute the congruent expressions for the time derivatives of v∗ but
now derived from the �ltered momentum quantity equation. Such goal requires to make the
fundamental distinction between the di�erential equation to which Equation (12) or (13)
tends to for vanishing time-steps. Again, this task is necessary, as in the PFP method the
intermediate velocity exists only in a discrete sense. The real meaning of v∗ depends on
which one is the chosen time discretized equation, while it would result erroneous to consider
for both schemes a unique expression for the derivatives in (17).
Let us �rst rearrange Equation (7) in a more compact form as

@�v
@t
+∇ · �H+∇ ��=∇ · (2�t �D) (18)

then, it can be shown that Equation (12) is the consistent AB=CN time integration of this
di�erential equation

@v∗

@t
=−∇ · �H+∇ · (2�∗t D∗) (19)

while Equation (13) results to be consistent to this other one:

@v∗

@t
=−∇ · �H+∇ · (2�D∗) +∇ · (2�LES �D) (20)

Both equations, associated to the same initial condition v∗n= �vn, describe the evolution of
a �eld v∗ but the two solutions are, generally, di�erent, each one satisfying either (19) or
(20). This way, the meaning of the discrete intermediate velocity can be correctly extended to
that one of a continuous �eld in (tn; �). Clearly, on the basis of the previous considerations,
Equations (19) and (20) must be exploited in each single time interval (tn; tn+1) where the
auxiliary function v∗ can be considered continuous. More rigorously, the �eld v∗ remains con-
tinuous also in (tn+1; �) but it will be simply no longer used. In fact, the di�erential problem
must be reset in the successive integration interval (tn+1; tn+2). Therefore, the set of succes-
sive integrations produces a family of auxiliary time-continuous functions as it is shown in
Figures 1(a) and (b).
The key task is to be able of �nding a relation for v∗@ , starting from (17), while taking into

account that one still does not know ∇�n+1 at the time one computes v∗. First, it is useful to
rewrite Equations (19) and (20) by exploiting Equation (18) which is valid for both of them
and eliminating the convective term H according to

@�v
@t
+∇ ��= @v

∗

@t
− ∇ · (2�∗t D∗) +∇ · (2�t �D) (21)
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(a)

(b)

Figure 1. Sketch of the time integration process for the auxiliary: (a) velocity, see Equation (19) or
(20); and (b) gradient, see Equation (14) or (15).
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@�v
@t
+∇ ��= @v

∗

@t
+∇ · [2�( �D−D∗)] (22)

respectively. It is easy to verify that, by assuming as initial condition the divergence-free
vector �eld v∗n= �vn, both (21) and (22), when evaluated at tn, lead to this same expression
for the �rst derivative

@�v
@t

∣∣∣∣n +∇ ��n= @v∗

@t

∣∣∣∣n (23)

It is very simple to reformulate the �rst-order accurate boundary conditions (16) in terms
of the LES equation. After that Equation (23) is substituted into the Taylor expansion, one
gets v∗= �vn+�t((@�v=@t)|n+∇ ��n)+O(�t2)= �vn+1+�t∇ ��n+O(�t2) thus, one has to suitably
express ∇ ��n in terms of the auxiliary gradient �eld that is available at the time in which the
intermediate boundary conditions for v∗ have to be applied.
Hence, one writes ∇ ��n= 〈∇ ��〉nn−1 +O(�t) where 〈∇ ��〉nn−1 ≡ (1=�t) ∫ tntn−1 ∇ �� dt. When con-

sidering (14), but concerning the interval (tn−1; tn), one would obtain 〈∇ ��〉nn−1 =∇ · [(�nLES −
�∗LES) �D

n
] + ∇�nCN, while considering (15) one would simply get 〈∇ ��〉nn−1 =∇�nAB, having

disregarded higher order terms in both relations. One must be careful that in the former ex-
pression, �nLES �= �∗LES must be considered but �∗LES is related to the auxiliary velocity �eld
already computed in (tn−1; tn) that, therefore, must be saved.
This example showed only that the intermediate boundary condition for LES equation can

be expressed from (16) while substituting either ∇�nCN or ∇�nAB. As a matter of fact, also after
considering the correct LES equations, the problem remains the same: along the boundary one
has an order of accuracy lesser than into the interior. A remedy to this fact is now illustrated.
In order to develop higher order intermediate boundary conditions, it is necessary to expand

the previous observations to the second-order term in (17). Depending on the chosen discrete
time integration (12) or (13), the expression of the second-order derivative is not unique but
must be expressed by means of time derivation of either Equation (21) or (22), respectively.
It can be shown (for the sake of brevity the full details are not reported) that as far as the
CN integration is concerned, one gets

v∗@ =fCN = �v
n+1
@ +�t

[
I +

�t
2

∇ · (2�nt∇s)
]∣∣∣∣n
@
∇ ��n + �t

2

2

{
∇@ ��
@t

∣∣∣∣n

+2∇ ·
[(
@�∗LES
@t

∣∣∣∣n − @�LES
@t

∣∣∣∣n) �Dn]}∣∣∣∣
@
+O(�t3) (24)

It appears that the di�erence v∗ − �vn+1 is not a pure gradient �eld since it is not possi-
ble in general to assess (@�∗LES=@t)|n − (@�LES=@t)|n=O(�t) on the boundaries. What is more,
Equation (24) remains still to be linked to the �eld ∇�nCN by means of Equation (14), so
leading to a complicate expression to be used for solving (12) with the congruent interme-
diate boundary condition. This conclusion, along with the fact that (12) should be carefully
linearized, suggest us that is suitable to avoid the CN integration of the SGS term in the form
expressed by Equation (12). Thus, other manipulations of such integration are not further
considered in this paper and only the analysis of the AB scheme is focused.
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4.3. Second-order accurate intermediate boundary conditions for the AB-based SGS time
integration. Analysis of Equation (13)

From the time derivative of (22), which is the time-continuous di�erential equation for v∗

consistent to the AB scheme, one gets

@2v∗

@t2
=
@2 �v
@t2

+∇@ ��
@t

− ∇ ·
[
2�∇s

(
@�v
@t

− @v∗

@t

)]
(25)

that, evaluated at time tn while exploiting Equation (23), becomes

@2v∗

@t2

∣∣∣∣n = @2 �v
@t2

∣∣∣∣n +∇ @ ��
@t

∣∣∣∣n +∇ · (2�∇s∇ ��n) (26)

Then, by substituting (23) and (26) into expansion (17), after some manipulations, it can
be shown that one gets

v∗= �vn+1 +�t
[
I +

�t
2

∇ · (2�∇s)
]

∇ ��n + �t
2

2
∇@ ��
@t

∣∣∣∣n +O(�t3) (27)

The main conclusion is that now, the di�erence v∗ − �vn+1 is a pure gradient �eld, provided
that the commutation [∇·(2�∇s)]∇ ��n=∇(�∇2 ��n) applies. For continuous operator, this is true
for unbounded �ows whereas, for bounded ones, spatial discretization can inhibit commutation
to remain valid. Thus, according to decomposition (11), one can deduce from comparison with
Equation (27) that the auxiliary gradient �eld expresses as ∇�n+1AB =∇( ��n + (��t=2)∇2 ��n) +
(�t=2)∇(@ ��=@t)|n +O(�t2).
However, in order for expression (27) to be practically applicable as intermediate boundary

conditions for (13), it is still necessary to reorganize it in terms of the only auxiliary �eld
∇�AB, evaluated at selected time-steps in which it is known. The knowledge of the auxiliary
gradient �elds allows us to know also the pressure gradients averaged in several time intervals,
by means of repeated applications of (15) (see Figure 1(b)). Hence, one of the possible strate-
gies is to express the entire unknown point-wise �ltered pressure gradients in (27) in terms
of the time-averaged counterpart, while taking care of retaining all second-order magnitude
terms.
Since ∇ �� has been supposed a time-continuous function, the exact time-average in the

interval (tn−1; tn) is expressed in terms of the point-wise gradient �eld as

〈∇ ��〉nn−1 =∇ ��n − �t
2
@∇ ��
@t

∣∣∣∣n +O(�t2) (28)

being, according to (15), 〈∇ ��〉nn−1 = [I − (�t=2)∇ · (2�∇s)]∇�nAB a known term at the current
time-step. Furthermore, it is also possible to use the trapezoidal rule for expressing two
successive time-averages

〈∇ ��〉nn−1 =
∇ ��n +∇ ��n−1

2
+O(�t2) (29)

〈∇ ��〉n−1n−2 =
∇ ��n−1 +∇ ��n−2

2
+O(�t2) (30)
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from which, one gets

〈∇ ��〉nn−1 − 〈∇ ��〉n−1n−2 =
∇ ��n − ∇ ��n−2

2
+O(�t2) (31)

This last relation, along with Equation (28), suggest us to rewrite (27) exploiting a �rst-
order accurate backward formula for the time derivative. It can be shown that one gets

v∗= �vn+1 +�t
{

∇�nAB +
[
I − �t

2
∇ · (2�∇s)

]
(∇�nAB − ∇�n−1AB )

}
+O(�t3) (32)

Therefore, by de�ning �t(∇�nAB − ∇�n−1AB )≡ ∇�, the congruent boundary condition for
Equation (13) is

v∗@ =fAB = �v
n+1
@ +�t∇�nAB|@ +

[
I − �t

2
∇ · (2�∇s)

]∣∣∣∣
@
∇�+O(�t3) (33)

The attractive feature of Equation (33) is that it is very simple to be implemented and clearly
expresses the meaning of the additional terms necessary for obtaining congruent intermediate
boundary conditions in LES approaches. Indeed, the term ∇� takes into account the time
evolution of the auxiliary gradient �eld along the boundaries. This feature is the main key
to avoid the problems addressed in Section 4.1, in points (a) and (b). Observe that only
the time-regularity of the real �ltered pressure gradient was required whereas the auxiliary
gradient �elds have been used only in discrete sense, according to their true meaning in
the fractional step method. Of course, provided that the velocity �eld is the un�ltered one,
Equation (33) is adoptable also for performing a DNS with the PFP method. Indeed, the
auxiliary gradient �eld intrinsically adapts itself to the adopted velocity.
Some analytical test-cases should be adopted to achieve the quantitative analysis of the

performances of (33). As a matter of fact this is not a straightforward task in case of LES
computations. Thus only a speci�c numerical test-case for con�ned �ows will be used in the
following for testing the e�ciency of (33).
For the sake of completeness, let us highlight that this paper follows and integrates the

studies published in References [10, 11] where a theoretical analysis of the local truncation
error, as well as of the correct intermediate boundary conditions for the PFP method, was
addressed for simulations of laminar �ows. Furthermore, the new expression of the interme-
diate boundary condition has been preliminarily adopted for performing a simulation of a
2D time-evolving mixing layer [27]. These papers should be considered for getting a more
comprehensive framework of the issues herein addressed.

5. NUMERICAL RESULTS

The problem adopted for the tests is constituted by a con�ned three-dimensional �ow in a
channel having the Cartesian stream-wise �ow direction x, the span-wise z and the vertical y.
The geometry of the channel is speci�ed by �xing the height Ly=H , the stream-wise length
Lx= 3

2�Ly and the span-wise one Lz=
1
2�Ly. The reference length is chosen as Lr =H , thus

the non-dimensional geometry parameters (indicated in the following with the superscript ×)

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:869–908



TIME-ACCURATE INTERMEDIATE BOUNDARY CONDITIONS 885

are L×
y =1, L

×
x =3�=2, L

×
z =�=2. The results obtained for steady and forced periodic channel

�ow as well as for a channel �ow with in�ow=out�ow are illustrated in the following sections.

5.1. Periodic channel �ows

In this case, the problem has two homogeneous �ow directions along x; z coordinates, respec-
tively. Therefore, periodic boundary conditions are adopted in x and z directions, while no
slip conditions act in y direction at the upper and lower walls. Let us highlight an important
issue about this test. Although such a problem is widely adopted as test-case, it is not fully
indicative of the real performance of a projection method. This happens as the Helmholtz–
Hodge decomposition is guaranteed to be purely orthogonal when such boundary conditions
are in e�ect [8, 11, 15]. Thus, the numerical boundary layer mode on the auxiliary gradient
�eld is orthogonal to the velocity one. Hence, by using this �ow problem, one should be
aware of such a peculiarity in the accuracy analysis.
The tests are performed both in DNS and in LES approaches and they are subdivided in

two sub-cases, the �rst with a base pressure gradient constant in time, the second with a
time-varying forcing one (pulsating channel �ow) according to Reference [28]. Although this
paper focuses on LES accuracy, comparisons between DNS cases are also useful since they
mainly highlight the e�ect of the accuracy of the tangential velocity components obtainable
with the HHD principle, without mixing also the interference of the SGS modelling. LES
results are then also compared each other for clarifying the di�erences in the solutions.
Concerning the DNS equations (1) and (2), the pressure in the channel is subdivided into

three contributions, that are p′=(1=�0)(p + pb + po), wherein p=p(x; t) is the residual
pressure required to enforce continuity, pb =pb(x) the base pressure driving the average �ow
along the stream-wise direction x and po =po(x; t) the superimposed oscillating pressure.
Of course, the base pressure must satisfy the relation pb(x)=p0 + (�0�C)x, being C a

constant corresponding to the second derivative along y of the average stream-wise veloc-
ity. For a channel of stream-wise periodic length Lx one has C=(pb(Lx) − p0)=(�0�Lx)=
�p0=(�0�Lx) therefore, pb(x)=p0 + �p0x=Lx and the constant p0 can be arbitrarily set to
zero.
Then, for a pressure oscillating to a frequency !=2�=T , being T the characteristic period,

one has po(x; t)= [�p0� cos(!t)]x=Lx where � is a non-dimensional value. Hence, the total
pressure gradient rewrites as

∇p′=
1
�0

∇p+ i�p0
�0Lx

[1 + � cos(!t)] (34)

where i is the unit vector along the x direction.
Now, the reference velocity Vr is chosen as v=Vrv×, the reference time as tr =H=Vr , the

reference pressure as pr =�0V 2r , so that the un�ltered NS equations (1), (2) are rewritten in
non-dimensional form as

∇× · v× = 0 (35)

@v×

@t×
+∇× · (v×v×) +∇×p× + i[1 + � cos(Re�!×t×)] =

1
Re�

∇2×
v× (36)
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where Re�= u�H=� is the Reynolds number with u� ≡Vr =
√
(�p0H)=(�0Lx) where the mean

friction velocity u� has been chosen as reference velocity. The reference forcing frequency in
wall units is !r = u2�=� therefore, it is su�cient to set �=0 in (36) to switch from pulsating
to steady channel �ow.
On the other hand, concerning the LES equations (4) and (7), the �ltered pressure in the

channel is ��=(1=�0)( �p+ pb + po) + 1
3 Tr( �T) thus, the total pressure gradient rewrites as

∇ ��= 1
�0
(∇ �p+∇pb +∇po) + 13∇Tr( �T)

=
1
�0

∇ �p+ i
�p0
�0Lx

[1 + � cos(!t)] +
1
3
∇Tr( �T)

=
1
�0

∇	+ i�p0
�0Lx

[1 + � cos(!t)] (37)

having de�ned (1=�0)∇	≡ (1=�0)∇ �p+ 1
3∇Tr( �T). Now, by properly setting �r =�0u2� , since

the Smagorinsky model expresses �LES = (C�)2| �D|= u�H (C�×)2| �D×|, the �ltered NS equa-
tions (4), (7) are rewritten in non-dimensional form as

∇× · �v× = 0 (38)

@�v×

@t×
+∇× · �v× �v× +∇×	× + i[1 + � cos(Re�!×t×)] = ∇× ·

[
2
(
1
Re�

+ �×LES

)
�D

×
]
(39)

wherein �×LES = �LES=u�H =(C�
×)2| �D×|. Furthermore, the Van Driest damping function [1] is

added to tune the eddy viscosity intensity close to the walls.
In order for analysing the results, one of the controlled quantities is the stress on the walls,

which is �w(x; z; t)=�(@u=@y)|yw , yw=0; 1. Hence, the non-dimensional stress becomes

�×w (x
×; z×; t×)= �

u�
�rH

@u×

@y×

∣∣∣∣
y×
w

=
1
Re�

@u×

@y×

∣∣∣∣
y×
w

(40)

having chosen the reference stress �r =�r =�0u2� . In case of LES, the meaning of
Equation (40) extends to the normal derivative of the �ltered x velocity component, that
is �u×.
The numerical results will be also post-processed by means of some averaging operators.

A �rst data reduction is obtained by performing on a quantity f(x×; y×; z×; t×) (DNS or
LES variable) the average over the z direction (indicated by the symbol �f

z
) and the time

(indicated by the symbol 〈f〉) according to

〈 �fz〉(x×; y×)=
1

TpL×
z

∫ t0+Tp

t0
d�
∫ L×

z

0
f(x×; y×; �; �) d� (41)

where t0 is a suitable initial time of integration and Tp the total integration time. The initial
time t0 is suitably chosen by controlling the full development of the time evolution of the
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variables as well as of the rms quantities. More speci�cally, the function f in (41) will
be a velocity component among u×; v×; w×, for DNS, or �u×; �v×; �w×, for LES approaches,
respectively.
Thus, some results are provided in terms of the one-dimensional energy spectra

Ess(k)=
1
L×
y

∫ L×
y

0
|Ĉ(k; 	)|2 d	 (42)

for s= 〈u×z〉; 〈v×z〉; 〈w×z〉 in case of DNS or s= 〈 �u×z〉; 〈�v×z〉; 〈 �w×z〉 in case of LES variables,
having indicated with Ĉ(k; 	) the complex coe�cients of the 1-D Fourier transform along the
x direction, i.e. 〈 �fz〉(x×)=

∑
qĈ(k)e

ikx× with k=2�q=L×
x and q the wavenumber.

Moreover, stresses (40) are controlled in time according to the average

�×w
x;z
(t×),

1
L×
x L×

z

∫ L×
x

0
d

∫ L×

z

0
�×w (
; �; t

×) d� (43)

as well as they are also reduced along x according to this other average

〈�×w
z〉(x×)=

1
TpL×

z

∫ t0+Tp

t0
d�
∫ L×

z

0
�×w (x

×; �; �) d� (44)

from which the results are then provided in terms of the one-dimensional energy spectrum

E�w(k)= |�̂w(k)|2 (45)

Then, the rms velocity �uctuations are considered. Speci�cally, the �uctuation f′ is herein
de�ned as the residual around the function 〈 �fx; z〉(y×) according to

〈 �fz〉(x×; y×)− 〈 �fx; z〉(y×),f′(x×; y×) (46)

so that the rms of the �uctuation is

RMSf′(y×),

(
1
L×
x

∫ L×
x

0
f′2 d


)1=2
(47)

Let us remind that the goal of this study is to analyse the numerical methodology for
LES and to test the performances of the di�erent boundary conditions but is not intended
for providing new insights into the physical �ow structure of channel �ows. Therefore, a
classical second-order �nite volume discretization has been adopted, as it was already tested
in the studies [10, 11]. More speci�cally, the CN integration is adopted only for the vertical
y-component of the molecular di�usive term. Accordingly, a moderate Reynolds number is
used and commutation terms between non-uniform �lter and derivatives are disregarded. How-
ever, more sophisticated and accurate schemes are currently developed, i.e. a deconvolution-
based �nite volume fourth-order centred discretization on non-uniform grids [27] and �fth-
order upwind ones [29].
All the following results are obtained for Re�=70 while by �xing the forcing parameters

�=1, !×=0:1, the pulsating channel �ow is onset. Setting a random divergence-free velocity
�eld as initial condition the simulations are started, hence, the numerical solution develops
and correlates then, after the numerical transient is �nished, the time average is started.
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Concerning the grid resolution, stream-wise and span-wise directions are discretized with a
uniform grid whereas a non-uniform grid (by means of a cosine-law stretching) is adopted in
the normal walls direction.
The adopted DNS grid has 70× 25× 35 cells, allowing to get the grid size measures

�x+ ≈ 4:7, �z+ ≈ 3:1 (the superscript ‘+’ expresses a length in wall units, i.e. �x+ = u��x=�=
Re��x×, �z+ = u��z=�=Re��z×) and the �rst point in the boundary layer is located at
y+ ≈ 0:14.
The adopted LES grid has 35× 16× 20 cells allowing us to get the grid size measures

�x+ ≈ 9:4, �z+ ≈ 5:5 and the �rst point in the boundary layer is located at y+ ≈ 0:34. The
Smagorinsky constant is �xed to C=0:2 and �×=2(�x×�z×)1=2. In order to test the
behaviour of the intermediate boundary conditions, the simulations are carried out for three
di�erent time-steps, i.e. �t=0:001; 0:0005; 0:00025. It is worthwhile highlighting that the
tests are not performed at constant Courant number therefore, for vanishing time-step, there
would be the appearance of a constant local truncation error term which is proportional to
the square of the spatial mesh sizes, see the analysis in References [10, 11].
For the DNS, after controlling the numerical transient and the rms quantities, the non-

dimensional time for starting the average is chosen as t0 = 62:5 and the period of integration
is Tp DNS =25 while, for the LES, the non-dimensional time for starting the average is chosen
as t0 = 200 and the period of integration is Tp LES =100.
The following sub-sections illustrate the results for each one of the �ow cases. The �gures

reporting the energy spectra are drawn in a double logarithmic scale whereas the wavenumber
value is normalized by a general zero wavenumber k0 = 2�=P. Thus, k0 is representative a
longitudinal wavenumber and, both for DNS and LES simulations, the longitudinal periodic
length is the same P=L×

x =3�=2.

5.1.1. Steady channel �ow. Direct numerical simulations: In Figures 2–4 are reported the
DNS results in terms of the stream-wise one-dimensional energy spectra for the three velocity
components (42), the rms of the velocity �uctuation (47) and the stream-wise one-dimensional
energy spectra of wall stresses (44), respectively. Moreover, in each �gure, left ((a), (c), (e))
and right ((b), (d), (f)) columns illustrate the computations performed for the three time-steps
with �rst- and second-order intermediate boundary conditions, respectively.
Speci�cally, the energy spectra shown in Figure 2 are descriptive of the fact that an almost

time-step-independent solution (especially at high wavenumbers) is reached when boundary
conditions (33) are used whereas stronger oscillations appear in the solutions, obtained with
(16), from (a) to (e) especially at low and medium wavenumbers. This feature is an indica-
tion that the contribute of the local truncation error, that depends on the time-step, reduces
more rapidly using the second-order intermediate boundary conditions, similarly to the appear-
ances reported in References [10, 11] for an analytical solution, while a monotonic reduction
seems still not reached with the �rst-order ones. By looking to the pictures, two main peaks,
corresponding to the appearance of coherent eddy structures formed in the �ow, are always
individuated at practically the same wavenumbers for all �gures but magnitude are di�erent.
The Figure 3 is much more explicative of such features. In fact, the rms velocity �uctuations

along the vertical direction enhance the di�erences in the two methods, particularly comparing
the results at the smallest time-step, i.e. �gures (e)–(f). Although some lack in the symmetry
of the rms pro�les can be adduced to the fact that Tp DNS =25 is a rather small time interval,
anyway the di�erences in the peaks are relevant and no longer depending on the time average.
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Figure 2. DNS of the steady channel �ow. Stream-wise one-dimensional energy spectra for the velocity
components. Intermediate boundary conditions (16) (left column) and (33) (right column).

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:869–908



890 F. M. DENARO

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

rm
s

0

0.005

0.01

0.015

rm
s

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

rm
s

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

rm
s

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
y

0

0.005

0.01

0.015

rm
s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
y

0

0.005

0.01

0.015

rm
s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
y

RMS u

RMS v
RMS w

RMS u

RMS v
RMS w

RMS u

RMS v
RMS w

RMS u

RMS v
RMS w

RMS u

RMS v
RMS w

RMS u

RMS v
RMS w

rms velocity fluctuations rms velocity fluctuations

rms velocity fluctuations rms velocity fluctuations

rms velocity fluctuations rms velocity fluctuations

∆ t = 0.0005

∆ t = 0.001

∆ t = 0.00025

(a) (b)

(c) (d)

(e) (f )

Figure 3. DNS of the steady channel �ow. RMS velocity �uctuations. Intermediate boundary conditions
(16) (left column) and (33) (right column).
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Figure 4. DNS of the steady channel �ow. Stream-wise one-dimensional energy spec-
tra for the stresses on the upper (up) and lower (down) walls. Intermediate boundary

conditions (16) (left column) and (33) (right column).
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It is very interesting to see that the three rms practically vanish far from the walls only when
second-order intermediate boundary conditions are used (let us remind that the central value
y=0:5 corresponds to y+ =35 and the two RMSv peaks in �gure (e) at y=0:2 and y=0:8
correspond to y+ =14) indicating that the solution has reached a good accuracy.
Figure 4 shows again that the results obtained with (33) are more time-step independent,

di�erently from those obtained with (16). Let us observe that, at this moderate Reynolds
number, the appearance in the spectra of an inertial sub-range region is rather limited and
however, owing to the �ow anisotropy, not fully justi�ed near the wall.
Large eddy simulations: Next, the LES results are illustrated in Figures 5–7, organized in

the same way as it was previously reported for DNS. Let us remark that it is well assessed that
LES simulations of channel �ows with the static SGS eddy–viscosity model are generally too
dissipative and the dynamic procedure is preferable. However, in the present paper the results
obtained with the dynamic procedure are not reported because the action of the dynamic
SGS modelling would make more complex to discern the main di�erences and recognize
the reasons. Actually, the goal of the present simulations is to test the dependence of the
results on the adopted intermediate boundary conditions while �xing all the other computation
parameters, including the SGS parameters. Now, having the DNS solutions in mind, the LES
results can be both compared each other and compared with DNS.‖ Let us highlight that the
cut-o� wavenumber due to the grid resolution along x (Nyquist frequency kmax =�=�x) is
log10(kmax=k0)≈ 1:3 but the use of the top-hat �lter (i.e. a smooth �lter) a�ects the energy
content also before it, that is in the higher part of the resolved wavenumber range. This is
the reason that motivated us to using the deconvolution approach [27, 29] but, for the sake
of simplicity, this approach is not added in the present LES method.
The energy spectra in Figure 5(a), (c), (e), indicate again that the �rst-order intermediate

boundary conditions (16) produce strong oscillations whereas the spectra obtained with (33)
show a slower variation. However, both methods produce an energy content at low wave-
numbers that is greater than that obtained with the DNS methods (observe that although the
log scales in DNS and LES plots are with di�erent extremes, the continuous line indicating
the inertial scaling is posed at the same level, helping in comparisons), very probably owing
to aliases errors introduced by the second-order discretization. Moreover, the two columns
indicate that the energy levels of u and v velocity components interchange each other at the
smallest time-step, see �gures (e) and (f), according to the DNS results that showed a greater
energy level of the vertical velocity. It is worthwhile noticing that �gures (e) and (f) clearly
show that the �rst-order intermediate boundary conditions produce a stronger dissipation of
the energy content than second-order one. Although there is a heavy e�ect of static eddy
viscosity model, the di�erences are also caused by the fact that the numerical boundary layer
produced by (16) added dissipation to that introduced by the SGS modelling while (33) is
able to reduce this e�ect. However, owing to the dissipation near the cut-o�, no one of the
energy peaks present in DNS is clearly highlighted in both LES methods.
Figure 6 shows the rms velocity �uctuations for LES as de�ned in Equations (46), (47)

applied on the �ltered velocities. Again, at the smallest time-step, see �gures (e) and (f),
the di�erences in terms of the peaks magnitude are rather pronounced. Symmetry is obtained

‖In principle, the comparison would require to �lter the DNS solution at each time-step and make the statistic over
the �ltered data. Here, this procedure is not performed and un�ltered DNS results are used.
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Figure 5. LES of the steady channel �ow. Stream-wise one-dimensional energy spectra for the velocity
components. Intermediate boundary conditions (16) (left column) and (33) (right column).
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Figure 6. LES of the steady channel �ow. RMS velocity �uctuations. Intermediate boundary conditions
(16) (left column) and (33) (right column).
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Figure 7. LES of the steady channel �ow. Stream-wise one-dimensional energy spectra
for the stresses on the upper (up) and lower (down) walls. Intermediate boundary

conditions (16) (left column) and (33) (right column).
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in all simulations, con�rming that Tp LES =100 is su�cient. However, it is evident that the
behaviour individuated in the two columns is di�erent: in the left one the peaks magnitude
reduces for diminishing time-step while in the right one the peaks magnitude increases.
Figure 7 illustrates the one-dimensional energy content of the wall stresses (44) and is

very representative of the convergence behaviour of the two methods. From �gures (a) to (e)
compared to (b) to (f) is evident that (16) did not allow us to reach a time-step independent
solution, up at the smallest time-step, presenting several oscillations, whereas (33) allows us
to get a su�ciently smooth spectra, see (e) and (f) for comparison. Particularly evident is
the fact that the upper and lower stresses have the same energy content only in �gure (f)
whereas �gure (e) shows a greater dissipation.

5.1.2. Pulsating channel �ow. The pulsating channel �ow is now tested because the unsteady
mean pressure gradient forces the velocities to be excited at some wavenumber thus resulting a
more critical test-case for checking the time accuracy of the intermediate boundary conditions.
The aim is to con�rm the advantage of (33), especially in computing the quantities near the
walls. Similar to the organization of the previous sub-section, the results are reported for three
time-steps and the intermediate boundary conditions (16) and (33) are indicated in the left
and right columns, respectively. The �gures are reported �rst for DNS (Figures 8–10) then
for LES (Figures 11–13).
Direct numerical simulations: Concerning DNS results, Figure 8 shows the one-dimensional

energy spectra of the three velocity components. Now, di�erently from the steady �ow channel,
it appears a peak in all the spectra at log10(�k=k0)=0:6 as a response to the pulsating frequency
!×=0:1. However, �gure (a) shows a peak also at lower wavenumber, caused by the lower
accuracy of (16) coupled with aliasing errors. Decreasing the time-step, such a peak disappears
in (c) and (e) but the global behaviour appears con�rming the oscillations already reported
in the results for the steady case. Furthermore, it appears that, by using (16), the energy
content at low wavenumbers is systematically lower than that obtained by using (33). What
is more, also the highest wavenumbers of the spectra highlight a stronger dissipation; indeed,
comparing (e) and (f) it appears that the energy peaks in (f), close to the cut-o�, are no
longer present with �rst-order boundary conditions (16).
The rms �uctuations, illustrated in Figure 9, con�rm the previous features. It is interesting

to see that for the higher time-step, see �gure (a), the results obtained with (16) are self-
explicative of the e�ect of the lack of accuracy. In general, from �gures (a), (c), and (e)
it seems that the rms have not reached a time-step independent solution. By comparing �g-
ures (e) and (f) one sees the di�erence in the vertical velocity. The energy content of the
walls stresses is reported in Figure 10. The behaviours are quite similar to what already ad-
dressed concerning Figures 8. Particularly, comparing (e) and (f), it can be observed a greater
dissipation of the energy content at highest wavenumber when (16) is used.
Large eddy simulations: Again, the LES results are compared each other for the two

methods and with the DNS results previously illustrated (again the reference is the continuous
line of the ideal slope). The energy spectra reported in Figure 11(a), 11(c) and 11(e) shows
the fact that the solution is still not time-independent at the smallest time-step whereas (b), (d)
and (f) are rather similar. It is not su�ciently evident a speci�c energy peak corresponding to
a response to the pulsating frequency and this fact has to be adduced to the strong dissipation
of the static SGS model. However, from comparison of �gure (e) and (f), it appears that
the energy content, especially at high wavenumber, is greatly dissipated with the intermediate
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Figure 8. DNS of the pulsating channel �ow. Stream-wise one-dimensional energy spectra for the
velocity components. Intermediate boundary conditions (16) (left column) and (33) (right column).
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Figure 9. DNS of the pulsating channel �ow. RMS velocity �uctuations. Intermediate
boundary conditions (16) (left column) and (33) (right column).

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:869–908



TIME-ACCURATE INTERMEDIATE BOUNDARY CONDITIONS 899

τw up
τw down

τw up
τw down

τw up
τw down

τw up
τw down

τw up
τw down

τw up
τw down

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-10

-9

-8

-7

-6

-5

Power spectral density Power spectral density

Power spectral density Power spectral density

log10(k/k0)

lo
g 10

 E

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-10

-9

-8

-7

-6

-5

log10(k/k0)

lo
g 10

 E

-10

-9

-8

-7

-6

-5

lo
g 10

 E

-10

-9

-8

-7

-6

-5
lo

g 10
 E

-10

-9

-8

-7

-6

-5

lo
g 10

 E

-10

-9

-8

-7

-6

-5

lo
g 10

 E

(b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2

log10(k/k0)(c)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

log10(k/k0)(d)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2

log10(k/k0)(e)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

log10(k/k0)(f )

∆ t = 0.001 

∆ t = 0.0005

Power spectral density Power spectral density∆ t = 0.00025

Figure 10. DNS of the pulsating channel �ow. Stream-wise one-dimensional energy
spectra for the stresses on the upper (up) and lower (down) walls. Intermediate

boundary conditions (16) (left column) and (33) (right column).
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Figure 11. LES of the pulsating channel �ow. Stream-wise one-dimensional energy spectra for the
velocity components. Intermediate boundary conditions (16) (left column) and (33) (right column).
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Figure 12. LES of the pulsating channel �ow. RMS velocity �uctuations. Intermediate
boundary conditions (16) (left column) and (33) (right column).
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Figure 13. LES of the pulsating channel �ow. Stream-wise one-dimensional energy
spectra for the stresses on the upper (up) and lower (down) walls. Intermediate

boundary conditions (16) (left column) and (33) (right column).
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boundary conditions (16) although �gure (f) shows a smaller energy level of the span-wise
velocity component. Moreover, the columns indicate that the energy levels of u and v velocity
components interchange each other at the smallest time-step, see �gures (e) and (f).
In Figure 12 are reported the rms velocity �uctuations from which it is always evident

the di�erence in terms of the peaks already analysed in the previous case. Similar to the
results obtained for the steady channel, in the left column the peaks magnitude reduces for
diminishing time-step while in the right one the peaks magnitude increases (just as observation,
(b) and (e) appear quite similar).
Figure 13 illustrates the one-dimensional energy content of the wall stresses (44). The

comments are practically the same observed for Figure 9 and again it appears that the results
of (f) are superior from those of (e) also taking into account the DNS in Figure 13.

5.2. Non-periodic channel �ow

The problem that is now illustrated, consists of a �ow in a channel with the same geometric
parameters of the previous simulations but with an in�ow prescribed at x×=0 and an out�ow
at x×=L×

x . Namely, no longer a time-evolving boundary layer but a spatially evolving one
is now considered. The aim of this test is to force the vector decomposition to be no longer
orthogonal (orthogonality a priori existing in the previous biperiodic channel �ows) thus
allowing the boundary layer mode to interfere with the divergence-free velocity �eld, see
References [10, 11]. The �nal goal is to show how, depending on the intermediate boundary
conditions, the e�ects propagate also into the interior of the �ow.
Spatially evolving turbulent �ow simulations require care in prescribing time-dependent in-

�ow conditions since the �ow downstream strongly depends on the inlet condition. There
are numerous techniques proposed for specifying the time series of in�ow pro�les, e.g.
References [30–32], each one having an appealing characteristic and a computational cost.
These techniques focus on the goal of getting a �ow �eld rapidly correlating, just after few
boundary layer thickness (from 10 to 20), in a physically meaningful �ow �eld. This should
be necessary for both DNS and LES approaches. As a matter of fact, since it is not the aim
of the present study to analyse the physical properties of this kind of �ow, being instead
the goal of this sub-section only of highlighting the di�erences appearing in the LES results
obtained with the boundary conditions (16) and (33), a simple plug inlet is speci�ed.
Furthermore, it is well known that, owing to the strong dumping of disturbances, LES

of transitional �ow is rather problematic when the static Smagorinsky SGS model is used.
Dynamic models or intermittence functions are, therefore, usually considered. Though, in the
present simulations, only the results obtained with the Smagorinsky constant �xed to 0.085 are
illustrated. In order for the test to be more critical, an ‘unphysical’ initial condition is speci�ed
by repeating the plug-�ow along x for generating an inviscid-like initial condition. Therefore,
the �ow needs to correlate along a wide portion of the channel length and for a long time
period. Thus, it is expected that the assignment of accurate intermediate boundary conditions
would wholly highlight the discrepancies in the results. The second derivative along x of the
auxiliary gradient �eld is set as out�ow condition. Let us observe again that, by adopting these
in�ow=out�ow boundary conditions, decomposition (11) is no longer orthogonal. Since the
same processor has been used (i.e. similar data-structure instruction, optimization and round-
o�), the di�erences in the �ow transition will depend only on the di�erent local truncation
error of the intermediate boundary conditions.
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Figure 14. LES of non-periodic channel �ow. Time evolution of: (a) stream-wise;
(b) vertical; and (c) span-wise velocity components at the centre of the channel for

the intermediate boundary conditions (16) and (33).

The Reynolds number, now referred to the inlet velocity, reaches the value 1:18× 106 at
the end of the channel. The adopted LES grid is rather coarse having 35× 22× 13 cells
thus, one should more properly speak of an ‘unresolved’ LES. The computational time-step
is �t=10−3.
The time-evolution of the three velocity components, in a point located at the centre of

the channel, i.e. (L×
x =2; L

×
y =2; L

×
z =2), is illustrated in Figure 14(a)–(c). They illustrate, after

an initial numerical transient, the departure of the behaviours for the solutions obtained with
(16) and (33), markedly for the span-wise component. A signi�cant di�erence is exhibited
also for the wall stresses (43), as reported in Figure 15(a),(b). From such evolutions and
controlling the RMS, the non-dimensional time for starting the average is chosen as t0 = 250
and the period of integration is Tp LES =100. Then, the energy content of the time evolution
of the wall stresses is illustrated in Figure 15(c), (d) while the stream-wise one-dimensional
is reported in (e), (f). It is evident that the numerical boundary layer a�ects the velocity
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Figure 15. LES of non-periodic channel �ow. Time evolution of the stresses on the: (a) upper and;
(b) lower walls and the energy spectra of (43); (c), (d) and (44); and (e), (f) for the intermediate

boundary conditions (16) (left) and (33) (right).
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�eld in a clear di�erent way: the intermediate boundary condition (16) introduces a higher
dissipation than (33). As expected, the discrepancy is much more highlighted in the present
non-periodic case.

6. CONCLUSIONS

The development of a new formulation for a better approximation of the intermediate
boundary conditions to be used in projection methods for solving incompressible Navier–
Stokes equations in both DNS and LES approaches has been illustrated. Particularly, the
formulation proposed in Reference [7] has been analysed and improved to a second-order ac-
curacy in time according to References [10, 11]. To the best of the author knowledge, there are
no other studies that focused on the congruence between assignment of intermediate boundary
conditions and LES formulation. This better approximation is especially expected to improve
the simulation of non-homogeneous �ows.
The theoretical analysis illustrated how a second-order time-accurate expression for the

auxiliary velocity �eld can be derived, provided that the congruent continuous form of the
prediction momentum equation is formulated. In fact, if the discrete character of the auxiliary
gradient �eld is correctly considered and exploited, then the consequent expression takes
into account the time evolution of the auxiliary gradient �eld onto the boundary and the well-
known problem of the appearance of the numerical boundary layer. Moreover, such expression
is straightforwardly applicable both for DNS and LES approaches since the auxiliary gradient
�eld adapts itself to the speci�c meaning.
Several DNS and LES simulations, comparing the performances of the �rst- and second-

order intermediate boundary conditions, have been performed. In the speci�c, the biperiodic
steady and pulsating channel �ows at Re�=70 have been considered and energy spectra as
well as rms of velocity �uctuations are reported. However, such a test is not fully exhaustive
of the real accuracy obtainable with the projection methods in LES since the biperiodic
channel �ow is a very particular test-case wherein the adopted boundary conditions a priori
guarantee the orthogonality of the HHD. Such feature appears to be much more relevant
when the numerical boundary layer mode is not orthogonal to the divergence-free vector
space. Therefore, in order for further assessment of the topic to be given, a non-periodic
channel �ow, for which the vector decomposition is no longer orthogonal, is also tested.
Hence, the LES results of the spatially developing boundary layer �ow clearly highlighted the
discrepancies between boundary conditions (16) and (33).
As a last comment, it is worthwhile observing that the considerations highlighted in this

study are particularly relevant when spatial high-order schemes (e.g. spectral or local recons-
truction-based) are adopted. Indeed, in such cases, the local truncation error is mainly driven
by the time-accuracy that can strongly a�ect the LES solutions since the �ltered variables can
be contaminated.
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